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Outline

Objective

• Present the activities of the CFD Research group in Zagreb and Wikki Ltd.

• Present the details of the coupled implicit solver

Topics

• CFD Group at University of Zagreb: Research Activity

• Block matrix and block linear solvers

• Pressure-based coupled implicit solver

• Coupled turbulence model

• Validation examples

◦ Simple canonical flows
◦ Internal and external aerodynamics
◦ Turbomachinery

• NUMAP-FOAM Summer School

• Summary
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Overview of Research Activity

Research Group Members, CFD Group at University of Zagreb

• CFD Research Group attached to the Chair of Turbomachinery

• 2 professors: Prof. Hrvoje Jasak, Prof. Željko Tuković

• 1 (+ 1) post doctoral researchers: dr. Vuko Vukčević

• 6 fully funded PhD students

• Larger group of Master Thesis and Diploma Thesis students integrated within the
group: results of Master Thesis projects directly used in further research

• Regular external (foreign) visitors working with the group: 3-6 months

Communication and Activity

• Leading developer of OpenFOAM: http://foam-extend.fsb.hr/

• Integrated work effort, modern communication and data integration tools

• Private Media-Wiki: http://spirit.local/mediawiki/

• YouTube Channel: 8th Floor CFD@FSB

• Public web site: http://www.fsb.hr/cfd

• Approximately 25 (significant) publications per year
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Overview of Research Activity

Open Source Software in Research and Engineering

• Open Source tools are ideal for a research environment: industrial partner gains
access not only to physical model equations but also to a working and validated
implementation by expert users

• Deployment of results of research is faster and more reliable

• Proven track record of model development and delivery

• First-class students with good technical and CFD background (OpenFOAM)

• Strong multi-disciplinary group: fluids, structure multi-phase flow modelling,
turbulence, optimisation. Premier source of numerics knowledge in collaboration
with leading world Universities
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Overview of Research Activity

Areas of Research Activity, CFD Group at University of Zagreb

• CFD simulations in Turbomachinery: basic validation and verification and
practical industrial simulations

◦ Incompressible flow: pumps and turbines, wind energy devices

◦ Compressible flow: compressors and fans with pressure- and density-based
CFD solution algorithms

◦ Harmonic balance modelling in CFD as a general-purpose tool

• Gradient-based and gradient-free optimisation: continuous and discrete adjoint

• CFD in naval hydrodynamics, wave and off-shore structures

• Fundamental research in numerics: discretisation, solution techniques, HPC
performance, inter-equation coupling

• Complex solid mechanics modelling: large deformation, lubricated contact,
conjugate heat transfer

• Fluid-solid interaction and “multi-physics” modelling

• Detailed fuel cell modelling using CFD

• Acoustics modelling using linearised Euler equations and coupling with CFD
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Block Matrix in OpenFOAM

Background

• OpenFOAM uses equation mimicking to perform field algebra and discretisation:
perfect for simple PDE-s or segregated solution algorithms

• . . . but sometimes we use equation segregation inappropriately

• There exists a family of problems that cannot be solved efficiently without
inter-equation coupling; some simulations “that work” can be performed 10-s or
100-s of times faster than with equivalent segregated algorithms

Objective

• Implement flexible and efficient block-coupled solution infrastructure

• Re-use all operator-based discretisation schemes, parallelisation and boundary
condition tools already available in OpenFOAM

• Optimise top-level code for efficient execution and ease of assembly

Examples

• Incompressible steady pressure-velocity system (with turbulence)

• Compressible multi-phase free surface simulations: under-water explosions
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Block Matrix in OpenFOAM

Block-Coupled Solution Algorithms

• For cases of strong coupling between the components of a vector, the components
can be solved as a block variable: (ux, uy , uz) will appear as variables in the
same linear system

• In spite of the fact that the system is much larger, the coupling pattern still exists:
components of u in cell P may be coupled to other components in the same point
or to vector components in the neighbouring cell

• With this in mind, we can still keep the sparse addressing defined by the mesh: if a
variable is a vector, a tensorial diagonal coefficients couples the vector
components in the same cell. A tensorial off-diagonal coefficient couples the
components of uP to all components of uN , which covers all possibilities

• For multi-variable block solution like the compressible Navier-Stokes system
above, the same trick is used: the cell variable consists of (ρ, ρu, ρE) and the
coupling can be coupled by a 5× 5 matrix coefficient

• Important disadvantages of a block coupled system are

◦ Large linear system: several variables are handled together

◦ Different kinds of physics can be present, e.g. the transport-dominated
momentum equation and elliptic pressure equation. At matrix level, it is
impossible to separate them, which makes the system more difficult to solve
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Block Matrix in OpenFOAM

Matrix Connectivity and Mesh Structure

• Irrespective of the level of coupling, the FVM dictates that a cell value will depend
only on values in surrounding cells

PW E

N

S

• We still have freedom to organise the matrix by ordering entries for various
components of the solution variable x

• Global sparseness pattern related to mesh connectivity: easier coefficient
assembly
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Block Matrix in OpenFOAM

Coupling Coefficient

• Matrix implemented with block coefficients

• Consider general linear dependence between two vectors m and n

m = Ab

• Component-wise coupling describes the case where mx depends only on nx, my

on ny and mz on nz

1. Scalar component-wise coupling

2. Vector component-wise coupling

3. Full (block) coupling

• Explicit methods do not feature here because it is not necessary to express them
in terms of matrix coefficients

• For reference, the linear equation for each cell featuring in the matrix reads

APmP +
∑

N

ANmN = R
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Coupled p-U Solver

Turbulent Steady Incompressible Flows: SIMPLE or Coupled System

• Equation set contains linear p-U and non-linear U-U coupling

∂u

∂t
+∇•(uu)−∇• (ν∇u) = −∇p

∇•u = 0

• Traditionally, this equation set is solved using the segregated SIMPLE algorithm

◦ Low memory peak: solution + single scalar matrix in peak storage

◦ p-U coupling is handled explicitly: loss of convergence (under-relaxation)

◦ Number of iterations is substantial; not only due to non-linearity

◦ Convergence dependent on mesh size: SIMPLE slows down on large meshes

• Block-implicit p-U coupled solution

◦ Coupled solution significantly increases matrix size: 4 blocks instead of 1

◦ . . . but the linear p-U coupling is fully implicit!

◦ Iteration sequence only needed to handle the non-linearity in the U-equation

◦ Net result: significant convergence improvement (steady or transient) at a
cost of increase in memory usage: reasonable performance compromise!
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Coupled p-U Solver

SIMPLE-Based Segregated p-U Solver

// Momentum equation assembly and solution

fvVectorMatrix UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff()

);

UEqn.relax();

solve(UEqn == -fvc::grad(p));

// Pressure equation assembly and solution

U = UEqn().H()/UEqn.A();

phi = fvc::interpolate(U) & mesh.Sf();

fvScalarMatrix pEqn

(

fvm::laplacian(1/UEqn.A(), p) == fvc::div(phi)

);

pEqn.solve();

phi -= pEqn.flux();

p.relax();
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Coupled p-U Solver

Block-Coupled u− p System Matrix Structure
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Coupled p-U Solver

Coupled Implicit p-U Solver: Source Code

fvVectorMatrix UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff()

);

fvScalarMatrix pEqn

(

- fvm::laplacian(rUAf, p) == -fvc::div(fvc::grad(p))

);

BlockLduSystem<vector, vector> pInU(fvm::grad(p));

BlockLduSystem<vector, scalar> UInp(fvm::UDiv(U));

BlockLduMatrix<vector4> A(mesh);

blockMatrixTools::insertEquation(0, UEqn);

blockMatrixTools::insertEquation(3, pEqn);

blockMatrixTools::insertBlockCoupling(3, 0, UInp, false);

blockMatrixTools::insertBlockCoupling(0, 3, pInU, true);

UpEqn.solve();

UpEqn.retrieveSolution(0, U.internalField());

UpEqn.retrieveSolution(3, p.internalField());
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Performance of the Coupled p-U Solver

Performance Improvements and Extensions in the Coupled p-U Solver

• Improvements in performance for the coupled solver: consistency, numerics

• Developed a procedure for analysis of inter-equation coupling

• Extension to implicit MRF and porous media

• Block-coupled k − ǫ and k − ω SST turbulence models

◦ Turbulence equations solved in a single block-coupled system

◦ Analysis of source terms to establish favourable cross-equation coupling

◦ Implemented in Diploma Thesis assignment: Robert Keser, Uni Zagreb
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Block Algebraic Multigrid

Block Version of Selective Algebraic Multigrid

• Major performance jump: block-coupled AMG with Selective Coarsening

• The algorithm follows the principles of the classical SAMG (Stüben), but uses a
primary matrix (Clees) for coarsening and calculation of interpolation

• Additionally, using additive correction (Hutchinson 1988) for solution acceleration

• Algorithm is extended to non-M-matrices and block coefficients

• New smoother based on Crout’s lower-upper factorisation

• Parallelisation with the in-depth matrix fetch across coupled interfaces

• Support for non-trivial coupling: GGI interface, mixing plane

Coupled Flow Solution Algorithms in OpenFOAM – p. 15/32



Performance of the Coupled p-U Solver

Performance of the Coupled p-U Solver: Speed and Robustness
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Performance of the Coupled p-U Solver

Performance of the Coupled p-U Solver: Speed and Robustness
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Performance of the Coupled p-U Solver

Performance of the Coupled p-U Solver: External Aerodynamics
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Performance of the Coupled p-U Solver

Performance of the Coupled p-U Solver: Submarine Flight, 14M Cells
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External Aerodynamics Simulations

DrivAer Geometry: External Aerodynamics, Coupled Solver, 13.2M Cells
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Performance of the Coupled p-U Solver

Turbomachinery: OTA-BM-1 Pump, Frozen Rotor MRF, 9M Cells
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Performance of the Coupled p-U Solver

Turbomachinery: OTA-BM-1 Pump, Frozen Rotor MRF, 9M Cells
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Water Jet

Water Jet Propulsor: Flow Conditions

• Six-bladed rotor, at 2000 rpm; eight-bladed stator

• Turbulent flow with steady inlet condition, u = 11.43m/s

• No experimental data available: real water jet cavitates at this flow rate

Mesh Layout

• Full annulus with resolved blade tip clearance: 2,153,424 hexahedral cells

• Two domains: rotor and stator connected using a GGI interface

Frozen Rotor MRF Simulation: Coupled Solver

• Rapid and smooth convergence in 150 iterations: 4 hours on a laptop computer

Transient Simulation

• Transient simulation completely impractical due to small mesh size at tip clearance
with large velocities

• Typical ∆t = 1e− 07 s; time for 1 period = 0.03 s

• Transient run ongoing for 4 weeks on a workstation (small mesh)

Harmonic Balance Simulation

• Performing harmonic balance simulations with 1, 2 and 7 harmonics
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Water Jet

Water Jet Propulsor
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Harmonic Balance: Water Jet

Water Jet Propulsor: Geometry and Mesh
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Harmonic Balance: Water Jet

Steady-State Frozen Rotor, MRF Solution, Coupled Solver: Convergence History
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Harmonic Balance: Water Jet

Steady-State Frozen Rotor, MRF Solution, Coupled Solver
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Harmonic Balance: Water Jet

Harmonic Balance for a Water Jet Propulsor
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Harmonic Balance: Water Jet

Harmonic Balance for a Water Jet Propulsor

• Temporal variation of head and efficiency: 1 and 2 harmonics
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Water Jet: Future Work

• Further validation & verification work ongoing

• It is possible to extend the HB model to cavitating flow
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NUMAP-FOAM Summer School

NUMAP-FOAM Summer School 2019

• 13th Edition of NUMAP-FOAM Summer School: 19-30/Aug/2019
https://www.fsb.unizg.hr/numap

The idea of the Summer School is to expand the physical modelling
knowledge, numerics and programming skills of attendees using
OpenFOAM in their research through direct supervision and one-to-one
work.

This is NOT an introductory OpenFOAM course: significant
understanding of the project and software is a pre-requisite for
application.

• The School accepts 15 attendees bringing their own projects to the School over a
period of 10 working days

• Work is embedded in the research group with 4–6 tutors providing daily one-to-one
attention

• School is open to “young researchers” (typically PhD students) but also to
industrial users, government labs and professors

• Strong follow-up collaboration and extensive publication lists

• Approx 170 attendees to NUMAP-FOAM, from the start in 2008
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Summary

Summary

• Ongoing research activity at Uni Zagreb on naval hydrodynamics, basic numerics
and turbomachinery CFD

• Actively looking for collaboration partners

Current Work Topics

• Naval hydrodynamics: added resistance in regular and irregular waves, full-scale
ship simulation, self-propulsion and manoeuvring, green water and freak wave
impact, modelling of irregular sea states

• Numerics: strongly coupled solution algorithms, Discontinuous Galerkin
discretisation, Overset Mesh and Immersed Boundary

• Turbomachinery: quasi-periodic methods (harmonic balance), LES and instability
modelling, implicit pressure- and density-based solvers, turbulence and transition

• Solid mechanics and FSI: coupled non-linear FSI problems

• Optimisation: Gradient-free and adjoint-based methods; uncertainty propagation
and robust design
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About Me

Hrvoje Jasak

• First degree: mechanical engineering, University of Zagreb, Croatia 1992

• PhD, Imperial College London 1993-1996: The birth of FOAM

• Senior development engineer, CD-adapco (Siemens), 1996-2000

• Technical director, Nabla Ltd. 2000-2004

• Consultant on CFD software, numerics and modelling, ANSYS Fluent 2000-2008

Current Work

• Director, Wikki Ltd: UK-based consultancy company 2004-

• Professor, University of Zagreb, Croatia 2007-

• Mercator Fellow, TU Darmstadt, 2016-

• Various software development and commercial support projects based on
OpenFOAM with consultants and large industrial partners

• Coordinating open source OpenFOAM development to allow contributions from the
public domain developers

• OpenFOAM workshops, lectures and seminars, visiting professorships (TU Delft,
Chalmers University and others)
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