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Outline

Objective

• Present my work on dynamic mesh support in OpenFOAM, 1994 to present

Topics

1. Introduction

2. polyMesh: Polyhedral mesh support

3. Mesh conversion and manipulation

4. Deforming meshes

5. Topological change support

6. Complex dynamic mesh simulations

7. Native overset mesh

8. Immersed Boundary Surface

9. Summary
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Introduction

Background: Early Days

• Ideas on the solver structure, programming language, equation mimicking and
discretisation / linear solver looks were established from the onset

• . . . but mesh support in early version was “very traditional”

• World-class solver requires ultimate meshing flexibility

• and we did not even have a basic mesh generator

• This was the starting point for my work in 1993:
PhD on adaptive mesh refinement
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Adaptive Mesh Refinement

Mesh Adaptivity on Shocked Flows
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Polyhedral Mesh Support

f

P

Vy

z

x

N

d

sf

f

r

Dancing Meshes: Past and Present – p. 5/59



Polyhedral Mesh Support

Flexibility in Meshing: Polyhedral Cells

• Historically, CFD meshes use shape-based support: hexahedron, pyramid,
prism, wedge, tetrahedron etc, defined in terms of vertices

• . . . but the FOAM solver is written using face addressing

• Objective: rewrite mesh classes using polyhedral mesh

◦ Points list: (x y z) coordinates
◦ Polygonal face: ordered list of point labels

◦ Polyhedral cell: list of face labels: changed to owner/neighbour addressing

◦ Boundary patches with slicing of face list

• Mesh metrics calculation using polyhedral decomposition into pyramids/tets
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Polyhedral Mesh Support

Rationale

• A polyhedron is a generic form covering all cell types: consistency in discretisation
across the board

• Finite Volume Method (FVM) naturally applies to polyhedral cells: cell shape is
irrelevant (unlike FEM)

• Mesh generation is still a bottleneck: polyhedral support simplifies the problem

• New mesh checking and consistency checks need to be developed and
implemented

Consequences: What Have We Done?

• All algorithms must be fully unstructured. Structured mesh implementation
possible where desired (e.g. aero-acoustics) but implies separate mesh classes
and work on discretisation code re-use

• In 1990s, fully unstructured FVM was a challenge: now resolved

• No problems with imported mesh formats: polyhedral cell covers it all!

• Issues with “old-fashioned software” compatibility with no polyhedral support, e.g.

post-processors. On-the-fly cell decomposition
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Mesh Conversion and Manipulation

Basic Mesh Generation and Conversion

• Basic mesh generation tool: blockMesh

◦ Block-structured mesher with curved edges and flexible grading

Mesh Converters

• starToFoam, sammToFoam

• fluentMeshToFoam

• gambitToFoam

• cfx4ToFoam

• ideasUnvToFoam

• ansysToFoam

Mesh Manipulation Tools

• transformPoints

• mergeMeshes

• mirrorMesh

• subsetMesh

• zipUpMesh

• checkMesh

And Reverse Converters

• foamToStarMesh

• foamMeshToFluent

• foamDataToFluent

• foamMeshToAbaqus
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Moving Mesh Simulations
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Moving Mesh Simulations

Moving Mesh Simulations

• Definition of a moving mesh problem: the number of points, faces and cells in the
mesh and their connectivity remains the same but the point position changes

• Sufficient for most cases where shape of domain changes in time

• FVM naturally extends to moving meshes: need to re-calculate cell volume and
area swept by a face in motion

• Moving mesh support built into mesh classes and discretisation operators

• In some places, algorithmic changes required in top-level solver code

• Problem: how to specify point motion for every point in every time-step?
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Moving Mesh Simulations

Finite Volume Moving Mesh Support

• Definition of conservation laws will involve a moving volume rather than a
stationary one, where ub is the “mesh velocity”

• Additional terms relate to the change of cell volume and mesh motion fluxes
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ds•ub = Fm

• Volume change appears in the rate-of-change term and is handled automatically

• Mesh motion flux appears in all convection terms and needs to be accounted for
algorithmically

• Note: in incompressible flows, there are two possible formulations on the pressure
equation, working either with relative or absolute fluxes. As a result, moving mesh
solvers are not yet consistently integrated with static mesh solvers (efficiency)
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Automatic Mesh Motion

Automatic Mesh Motion

• External shape of the domain is
unknown and a part of the
solution

• By definition, it is impossible to
pre-define mesh motion a-priori

• In all cases, only motion of the

boundary is known or calculated

• Automatic mesh motion deter-
mines the position of internal
points based on boundary motion
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Automatic Mesh Motion

Automatic Mesh Motion

• Automatic mesh motion will determine the position of mesh points based on the
prescribed boundary motion

• Motion will be obtained by solving a mesh motion equation, where boundary
motion acts as a boundary condition

• The “correct” space-preserving equation is a large deformation formulation of
linear elasticity . . . but it is too expensive to solve

• Choices for a simplified mesh motion equation: fvm or tetFem

◦ Laplace equation with constant and variable diffusivity

∇•(k∇u) = 0

◦ Linear pseudo-solid equation for small deformations

∇•[µ(∇u+ (∇u)T ) + λI∇•u] = 0

• Mesh spacing and quality control by variable diffusivity (Tuković, 2005)

• Changing diffusivity re-distributes the boundary motion through the volume
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Automatic Mesh Motion

Effect of Variable Diffusivity: Oscillating Airfoil Simulation

• Initial mesh; constant diffusivity

• Distance-based diffusivity 1/l2; deformation energy; distortion energy
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DNS of Rising Bubbles

Multi-Phase Free Surface Tracking

• Two meshes coupled on free
surface: perfect capturing of the
interface and curvature evaluation

• Coupling conditions on the inter-
face include stress continuity and
surface tension pressure jump

Free Rising Air Bubbles

• Simulation particularly sensitive
on accurate handling of surface
curvature and surface tension

• Full density and viscosity ratio

• Locally varying surface tension
coefficient as a function of
surfactant concentration

• Coupling to volumetric surfactant
transport: boundary conditions
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DNS of Rising Bubbles

Complex Coupling in a Single Solver: 3-D Rising Bubble: Željko Tuković PhD, 2005

• FVM flow solver: incompressible p− u coupling

• FEM automatic mesh motion: variable diffusivity Laplacian

• FAM for surfactant transport: convection-diffusion on surface, coupled to 3-D

• Non-inertial frame of reference, attached to bubble centroid
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Naval Hydrodynamics

Tokyo 2015 Code Certification Workshop for Naval Hydrodynamics CFD
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Naval Hydrodynamics

SOPHYA Project: Sea-Keeping for Fast Hulls

• Modelling, towing tank experiments and full-scale sea trials for a fast hull in calm
water and in waves

• Combination of model-scale and full-scale CFD simulations

• Collaboration with Uni Trieste and Monte Carlo Yachts
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Turbomachinery
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Turbomachinery

Detailed Validation of Compressible Turbomachinery Solvers

• Rothalpy formulation and rothalpy jump conditions at rotor-stator interfaces

• Compressible harmonic balance

Dancing Meshes: Past and Present – p. 20/59



Turbomachinery
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Fluid-Structure Interaction

Fluid-Structure Coupling Capabilities in OpenFOAM

• As a Continuum Mechanics solver, OpenFOAM can deal with both fluid and
structure components: easier setup of coupling

• (Parallelised) surface coupling tools implemented in library form: facilitate coupling
to external solvers without “coupling libraries” using proxy surface mesh

• Structural mechanics in OpenFOAM targeted to non-linear phenomena: consider
best combination of tools
◦ Large deformation formulation in absolute Lagrangian formulation

◦ Independent parallelisation in the fluid and solid domain

◦ Parallelised data transfer in FSI coupling

• Dynamic mesh tools and boundary handling used to manipulate the fluid mesh
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Complex Mesh Motion

Dynamic Mesh Examples of Complex Combination of Motion and Sliding
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Topological Changes
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Topological Changes

Topological Changes: Mesh Morphing

• For extreme cases of mesh motion, changing point positions is not sufficient to
accommodate boundary motion and preserve mesh quality

• Definition of a topological change: number or connectivity of points, faces or cells
in the mesh changes during the simulation

• Topological changes need to be automated and paired with (complex, dynamic)
point motion, eg. layering or sliding
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Topological Changes

Mesh Morphing Engine Implementation of Topological Changes in OpenFOAM

• Primitive mesh operations

◦ Add/modify/remove a point, a face or a cell

◦ This is sufficient to describe all cases, even to to build a mesh from scratch
◦ . . . but using it directly is inconvenient

• Topology modifiers

◦ Typical dynamic mesh operations can be described in terms of primitive
operations. Adding a user-friendly definition and triggering logic creates a
“topology modifier” class for typical operations
∗ Attach-detach boundary
∗ Cell layer additional-removal interface
∗ Sliding interface
∗ Error-driven adaptive mesh refinement

• Dynamic meshes

◦ Combining topology modifiers and user-friendly mesh definition, create
dynamic mesh types for typical situations

◦ Examples: mixer, 6-DOF motion, IC engine mesh (valves + piston)
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Topological Changes

Mesh Morphing Engine

• Each mesh modifier is self-contained, including the triggering criterion

• Complex cases contain combinations of modifiers working together, mesh motion
and multi-step topological changes

• Polyhedral mesh support makes topological changes easier to handle: solver is
always presented with a valid mesh

• Topological changes incorporate automatic data renumbering

• Conservation of local and global properties executed by special mesh motion
steps: no data mapping

• Faces and cells are inflated from zero area/volume before insertion and removed
at zero area/volume: mapping is replaced by mesh motion
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Topological Changes

Simulating Cold Flow and EGR: Mixture Preparation

• Mixture preparation in a 2-stroke engine: mesh sliding and layering
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Topological Changes

Volume-Surface-Lagrangian Simulation

• Main coupling challenge is to
implement all components
side-by-side and control their
interaction

• Lagrangian tracking uses an ODE
solver: block coupling at matrix
level is not needed or cannot be
used as before

• Close coupling is achieved by
sub-cycling or iterations over the
block system for each time-step

• If the model-to-model coupling
fails, options on improving the
stability are considerably limited

• Engine wall film simulation: cour-
tesy of Politecnico di Milano
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Polyhedral AMR With Load Balance
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Polyhedral AMR With Load Balance

Polyhedral Adaptive Mesh Refinement

• Jasak PhD (1994): Shape-based refinement:
splitHex

• Janssens (2003): hexRef8 class

• Neither of above is great: no directional refinement,
no 2-D adaptivity, no control of grading

• The rest of FOAM is polyhedral: refinement isn’t!

• Polyhedral cell adaptivity: Jasak, Vukčević (2018)

Dynamic Load Balancing

• New implementation: load balancing using
decompose-reconstruct tools and Pstream

communication

• Load balancing is now a basic function of
topoChangerFvMesh
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Polyhedral AMR With Load Balance
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Polyhedral AMR With Load Balance
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Overset Mesh
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Overset Mesh

Parallel Efficiency of the Overset Mesh

• Implementation of Overset interpolation performed similar to GGI

◦ Interpolation performed in out-of-core multiplication with parallel comms
◦ Parallelised using mapDistribute tool

• Parallel scaling test case

◦ Scaling test performed on 20M cells submarine mesh

◦ Approximately 40K donor/acceptor cells (0.4% of total cell count)

◦ Performed 20 iterations with explicit and implicit Overset fringe

• Parallel speed-up on 64 cores: 41 (implicit) and 46 (explicit)

• Parallel efficiency on 64 cores: 64% (implicit) and 74% (explicit)
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Overset Mesh: DTMB 5415

Single overset region for the ship grid communicates with:

• Background grid

• Two rudder grids (starboard and port-side)
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Overset Mesh: DTMB 5415

Adaptive Overlap Assembly has a robust fallback mechanism:

• Search for the best overlap according to user–specified criteria

• The search is stopped when the best overlap has been found
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Overset Mesh: DTMB 5415

DTMB 5415 simulation

• 5.5 million cells with 4 overset regions: background, near hull and two rudders

• Irregular, stern–quartering phase–focused waves

• Self–propelled with two actuator discs

• Two rudders with PID controllers for course–keeping

• Running on 104 cores in parallel: roughly 10 peak periods in few days
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Immersed Boundary
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Immersed Boundary

Immersed Boundary Surface

• IB implementation relies on the imposition of the boundary condition in the bulk of
the mesh: this is built into the discretisation matrix

• Objective: implement the influence of the presence of a boundary within the mesh
as if the mesh consists of polyhedral body-fitted cells:

◦ Introduce the “new” IB face in the cut cell
◦ Account for the partial cell volume without loss of accuracy

◦ Account for partial face areas without loss of accuracy

◦ Calculate face and cell centre consistent with cell cut

• . . . without changing the geometric mesh at all!

Advantages and Disadvantages

• IBS can eliminate volume mesh generation altogether

• Possible combination of body-fitted mesh and IB appendages or moving parts

• Due to wall functions, turbulent viscous force is (slightly) less accurate with IB
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Immersed Boundary

Immersed Boundary Surface: Methodology

Fluid cells: untouched

Solid cells: deactivated

IBS: intersected cells

Adjusted IBS centres

Background cell

Corrected face centre

Corrected cell centre

Immersed face centre

• Immersed boundary patch is included into the mesh via the distance function: all

cells that straddle the immersed boundary remain active

• STL resolution or quality is not important: only using nearest distance

• Immersed intersection calculated based on point distance

◦ All faces and cells are cut by a distance plane

◦ Simple planar cutting provides robustness: no feature edges
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Immersed Boundary

Combined Immersed Boundary and Body-Fitted Mesh
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Immersed Boundary

Combined Immersed Boundary and Body-Fitted Mesh
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Immersed Boundary

ONR Tumblehome Ship Hull: Body-Fitted vs Immersed Boundary

• Complete appended hull using Immersed Boundary: viscous drag test
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Immersed Boundary

ONR Tumblehome Ship Hull: Body-Fitted vs Immersed Boundary
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Immersed Boundary

ONR Tumblehome Ship Hull: Body-Fitted vs Immersed Boundary
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Immersed Boundary

Self-Propulsion in Calm Water (Preliminary Study)

• Self–propulsion in calm water

• PID controller for propeller rotation rate to achieve the desired ship speed

• Two propellers modelled with patch–type actuator disk model

• Static rudders modelled with Immersed Boundary

• Hull and static appendages are body fitted
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Immersed Boundary

Course-Keeping Test: Combined Body-Fitted and Immersed Boundary Mesh

• Free–running model with propellers at constant rotation rate

• Path offset at time zero to test the rudder controllers and the immersed boundary
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Immersed Boundary

Combined Immersed Boundary and Body-Fitted Mesh: Induced Wave Load
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Summary

Summary

• OpenFOAM probably has world-leading dynamic mesh capability today

• . . . but most of it is only used by experts

• Library design allows multiple dynamic mesh techniques to be used together

• Traditional methods of automatic motion and topo changes look quite dated

• Overset mesh and immersed boundary are world-leading!

• Training, validation and verification may help
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About Me

Role in OpenFOAM Development

• One of two original developers of OpenFOAM software, starting from 1993

• FVM discretisation, polyhedral mesh handling, linear solvers: Jasak PhD 1996

• Error estimation, adaptive mesh refinement, dynamic mesh, automatic mesh
motion, topological changes: (sliding, layering); engine CFD

• Parallelism and HPC support: decomposition/reconstruction, comms

• Mesh generation, conversion, manipulation; pre- and post-processing tools

• Turbulence modelling, LES, free surface flows, solid mechanics, visco-elastic

• Finite Element motion solver, finite area method, ODE solvers

• POD, reduced order modelling

• Geometric parametrisation and automatic optimisation
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Mesh Ordering in OpenFOAM

Strong Ordering Requirement

• Polyhedral mesh definition

◦ List of vertices. Vertex position in the list determines its label

◦ List of faces, defined in terms of vertex labels
◦ List of cells, defined in terms of face labels
◦ List of boundary patches

• All indices start from zero: C-style numbering (no discussion please)

• OpenFOAM uniquely orders mesh faces for easier manipulation

◦ All internal faces are first in the list, ordered by the cell index they belong to.
Lower index defines owner cell (P ); face normal points out of the owner cell

◦ Faces of a single cell are ordered with increasing neighbour label, i.e. face
between cell 5 and 7 comes before face between 5 and 12

◦ Boundary faces are ordered in patch order. All face normals point outwards of
the domain

• With the above ordering, patches are defined by their type, start face in the face
list and number of faces

• Above ordering allows use of List slices for geometrical information
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Mesh Ordering in OpenFOAM

Strong Ordering Requirement

1. Number points and cells arbitrarily: band compression improves smoother
performance

2. Insert all internal faces based on cell ordering: upper triangle

3. Add boundary face patch by patch (as ordered by the mesher)

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C11 C12 C13 C14

C15 C16 C17 C18 C19

C20 C21 C22 C23 C24

f0 f2 f4 f6

f1 f3 f5 f7 f8

f9 f11 f13 f15

f10 f12 f14 f16 f17

f36 f37 f38 f39

f40

f41

f42

f43

f44
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Mesh Ordering in OpenFOAM

Strong Ordering Requirement: Face Addressing Format

• Face owner list: size of all cells

• Face neighbour list: size of internal cell

• Boundary patch: defined by size and start face

face owner neighbour

0 0 1
1 0 5
2 1 2
3 1 6
4 2 3
5 2 7
6 3 4
7 3 8
8 4 9
9 5 6
10 5 10
11 6 7
12 6 11

2

(

Wing

{
type wall;

nFaces 154;

startFace 23579;

}
Inlet

{
type patch;

nFaces 74;

startFace 23733; <- 23579 + 154

}
)
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Zones and Sets in OpenFOAM

Operating on Sub-Spaces in the Mesh

• Zones and sets allow sub-setting of mesh elements

• Note: discretisation and matrix will always be associated with the complete mesh!

• Zones: points, faces and cells

◦ Define partition of mesh elements. Each point/face/cell may belong to a
maximum of one zone.

◦ Fast two-directional query: what zone does this point belong to?

◦ Used extensively in topological mesh changes

Definition of Zones

• A Zone is a collection of points/faces/cells which represent a mesh feature within

a contiguous numbering space

• A zone remains invariant
◦ In parallel execution (points/faces/cells are locally numbered)

◦ Under topological changes (layering, sliding, refinement)

Examples of Use

• Definition of a rotating “space” for MRF

• Integrate flow measures in an “internal surface” within the mesh, which consists of
oriented collection of faces: flipMap in a face zone
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Zones and Sets in OpenFOAM

Definition of Sets

• Arbitrary grouping of points/faces/cells for manipulation

• Single cell may belong to multiple sets

• Sets used to create other sets: data manipulation with setSet tool

• Examples

faceSet f0 new patchToFace movingWall

faceSet f0 add labelToFace (0 1 2)

pointSet p0 new faceToPoint f0 all

cellSet c0 new faceToCell f0 any

cellSet c0 add pointToCell p0 any

• On completion, sets can be converted into zones: setsToZones utility
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Multiple Equation Sets in OpenFOAM

Code Organisation

• Every individual mesh region represents a single addressing space, with its own
internal faces and boundaries. Operations on various face types are consistent:
consequences for conjugate heat transfer type of coupling

• Combining variables or addressing spaces into implicit coupling requires special
practices and tools

Multiple Domains in a Single Simulation

• Original class-based design allows for multiple object of the same type in a single
simulation, e.g. meshes and fields

◦ Multiple named mesh databases within a single simulation:
1 mesh = 1 domain, with separate fields and physics

◦ Fields, material properties and solution controls separate for each mesh
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Multiple Equation Sets in OpenFOAM

Case Organisation for Multiple Meshes: “Main Mesh” and solid

system

constant

points

cells

faces

boundary

polyMesh

. . . Properties

solid

solid

fvSchemes

fvSolution

U

T

solid

<case>

boundary

time directories

controlDict

fvSchemes

fvSolution

polyMesh

points

cells

faces

. . . Properties

U

p
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Multiple Equation Sets in OpenFOAM

Example: Conjugate Heat Transfer

• T-equation spans multiple meshes

• Conjugate solid wall is present as a boundary condition on T and Tsolid

coupledFvScalarMatrix TEqns(2);

TEqns.set

(

0,

fvm::ddt(T) + fvm::div(phi, T)

- fvm::laplacian(DT, T)

);

TEqns.set

(

1,

fvm::ddt(Tsolid) - fvm::laplacian(DTsolid, Tsolid)

);

TEqns.solve();

• Coupled solver handles multiple matrices together in internal solver sweeps

• . . . and the linear equation solver sees a “single addressing space”

Dancing Meshes: Past and Present – p. 59/59


	Outline
	Introduction
	Adaptive Mesh Refinement
	Polyhedral Mesh Support
	Polyhedral Mesh Support
	Polyhedral Mesh Support
	Mesh Conversion and Manipulation
	Moving Mesh Simulations
	Moving Mesh Simulations
	Moving Mesh Simulations
	Automatic Mesh Motion
	Automatic Mesh Motion
	Automatic Mesh Motion
	DNS of Rising Bubbles
	DNS of Rising Bubbles
	Naval Hydrodynamics
	Naval Hydrodynamics
	Turbomachinery
	Turbomachinery
	Turbomachinery
	Fluid-Structure Interaction
	Complex Mesh Motion
	Topological Changes
	Topological Changes
	Topological Changes
	Topological Changes
	Topological Changes
	Topological Changes
	Polyhedral AMR With Load Balance
	Polyhedral AMR With Load Balance
	Polyhedral AMR With Load Balance
	Polyhedral AMR With Load Balance
	Overset Mesh
	Overset Mesh
	Overset Mesh: DTMB 5415
	Overset Mesh: DTMB 5415
	Overset Mesh: DTMB 5415
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Immersed Boundary
	Summary
	About Me
	Mesh Ordering in OpenFOAM
	Mesh Ordering in OpenFOAM
	Mesh Ordering in OpenFOAM
	Zones and Sets in OpenFOAM
	Zones and Sets in OpenFOAM
	Multiple Equation Sets in OpenFOAM
	Multiple Equation Sets in OpenFOAM
	Multiple Equation Sets in OpenFOAM

